
Rapid Cytometric Antibiotic Susceptibility Testing Utilizing Adaptive
Multidimensional Statistical Metrics
Tzu-Hsueh Huang,# Xinghai Ning,‡ Xiaojian Wang,‡ Niren Murthy,‡ Yih-Ling Tzeng,*,§

and Robert M. Dickson*,#

#School of Chemistry & Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta,
Georgia 30305-0400, United States
‡Department of Bioengineering, University of California at Berkeley, Berkeley, California 94720, United States
§Division of Infectious Disease, Emory University, Atlanta, Georgia 30322, United States

*S Supporting Information

ABSTRACT: Flow cytometry holds promise to accelerate
antibiotic susceptibility determinations; however, without
robust multidimensional statistical analysis, general discrim-
ination criteria have remained elusive. In this study, a new
statistical method, probability binning signature quadratic form
(PB-sQF), was developed and applied to analyze flow
cytometric data of bacterial responses to antibiotic exposure.
Both sensitive lab strains (Escherichia coli and Pseudomonas
aeruginosa) and a multidrug resistant, clinically isolated strain
(E. coli) were incubated with the bacteria-targeted dye,
maltohexaose-conjugated IR786, and each of many bactericidal
or bacteriostatic antibiotics to identify changes induced around
corresponding minimum inhibition concentrations (MIC).
The antibiotic-induced damages were monitored by flow cytometry after 1-h incubation through forward scatter, side scatter, and
fluorescence channels. The 3-dimensional differences between the flow cytometric data of the no-antibiotic treated bacteria and
the antibiotic-treated bacteria were characterized by PB-sQF into a 1-dimensional linear distance. A 99% confidence level was
established by statistical bootstrapping for each antibiotic-bacteria pair. For the susceptible E. coli strain, statistically significant
increments from this 99% confidence level were observed from 1/16x MIC to 1x MIC for all the antibiotics. The same
increments were recorded for P. aeruginosa, which has been reported to cause difficulty in flow-based viability tests. For the
multidrug resistant E. coli, significant distances from control samples were observed only when an effective antibiotic treatment
was utilized. Our results suggest that a rapid and robust antimicrobial susceptibility test (AST) can be constructed by statistically
characterizing the differences between sample and control flow cytometric populations, even in a label-free scheme with scattered
light alone. These distances vs paired controls coupled with rigorous statistical confidence limits offer a new path toward
investigating initial biological responses, screening for drugs, and shortening time to result in antimicrobial sensitivity testing.

The accelerating emergence of multidrug-resistant bacteria
and difficulty in rapidly identifying appropriate treatment

options are major threats to global public health.1−4 The ability
of bacteria to rapidly counter newly available antibiotics within
only a few years of clinical introduction has also produced
“super-bug” infections that are essentially untreatable. Such
rapid acquisition of resistance has also decreased both
incentives and options for new antibiotic development, with
only two new antibiotics having been approved since 2008.3,5

With 30% of hospital deaths attributable to sepsis, bacterial
infections of the blood have become the 10th leading cause of
hospital deaths in the US.6,7 Although rapidly tailored
treatment to each individual patient can have a major impact
on positive outcome,8 currently, nearly 30% of patients receive
inappropriate antimicrobial therapy. Such nonideal treatment
leads to 2-fold higher mortality rates than when correctly
treated9 and also contributes to the increase in multidrug-

resistance resulting from sublethal antibiotic exposure.10,11

While rapid initiation of appropriate treatment is crucial to
positive patient outcome, only combined knowledge of the
pathogen identity and its antibiotic sensitivity profile comprise
actionable treatment information. Recent advances that employ
mass spectrometry and genetic tests12−16 enable identification
of an infectious agent within a few hours after positive blood
culture. However, conventional antibiotic sensitivity tests
(ASTs) typically require overnight subculturing, followed by
an 18 to 24 h AST, resulting in a 42−48 h post blood culture
delay in susceptibility data. Thus, improving AST time-to-result
would have positive patient and public health outcomes.
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In many ways resulting from the inability to selectively target
bacteria in human specimens, ASTs typically rely on the
lengthy process of monitoring growth inhibition of pure
cultures under antibiotic challenge. Yet, much smaller anti-
biotic-induced changes in bacterial cells are likely present long
before growth inhibition is detected. To amplify such
potentially small changes present at shorter exposure times,
large numbers coupled with new multidimensional statistical
metrics are needed. Commonly applied in research laboratories
for viability testing,17,18 flow cytometry rapidly measures
multichannel fluorescence and scatter from each cell within a
large population, yielding large, multidimensional histograms
ripe for quantitative statistical analysis. Previously described
cytometry-based ASTs mostly rely on interpreting qualitative
differences in live and dead cell populations using high-
background fluorescent membrane integrity/potential sen-
sors.19−28 Detection of label-free scattered light changes and
intracellular reactive oxygen species (ROS) generation in
response to antibiotic exposure have also been reported.29−32

While advances continue to be made in instrumentation and
miniaturization for analyzing bacterial samples,33−37 high
background, very large statistical variability, and insufficient
changes from controls make many cytometry-based bacteria/
antibiotic combinations appear unquantifiable.23,25,38 Thus,
even with a large number of observations probing antibiotic-
induced changes within a given cell population, flow cytometic
ASTs fail from the lack of accurate statistical metrics to quantify
multidimensional changes relative to controls.
Ideally, the dissimilarity between 2 distributions (sample vs

control) is quantified by various test statistics, yielding
“distances” between measured distributions. One-dimensional
test statistics are either too sensitive to provide meaningful
analysis39,40 or required a large number of events40 and are
usually not rigorously extensible to multidimensional data.
Adaptive binning overcomes the data set size and multidimen-
sional extensibility issues to focus analysis on the most
informative regions of the data;41,42 however, sample
comparison is control-specific in probability binned chi-square
(PB-χ2) tests, making the test result unsuitable as a true (linear)
metric for directly comparing multiple samples. As a
consequence, it is difficult to adjust statistical tests for biological
variability. Various multidimensional distance metrics are
known, but necessary computational resources tend to scale
with the number of bins raised to some large power. Scaling
quadratically with the number of bins, quadratic form (QF)
distance statistics directly addresses the metric issue, providing
a linear distance between any two multidimensional data sets,43

but its reliance on fixed bin sizes can limit its extension to
multidimensional cytometry data sets. Instead of comparing
occurrences in fixed bins, adaptively binned or “signature” QF
(sQF) has been developed for image analysis to directly
compare signatures, or the most important features, within
images.44,45 We have combined the adaptive probability binning
with the signature QF distances to create a linear statistical
metric that more readily scales to multiple dimensions.
Combining the best attributes of PB-χ2 and sQF 2D image
analysis, our PB-sQF approach focuses binning on the high-
density regions of the data, better facilitating true distance
comparisons among multidimensional data sets.
Utilizing the fact that bacterial uptake systems have broad

substrate specificities, Ning et al.46 recently reported that
bacteria can be selectively targeted through the maltodextrin
uptake pathway. In contrast to other technologies, fluorescently

labeled maltohexaose is selectively taken up by bacteria to reach
mM intracellular concentrations, without detectable mamma-
lian cell uptake, both in vitro and in vivo.46 Such selective
labeling offers a way to potentially identify bacterial populations
prior to time-consuming subculturing and growth. Thus, using
both label-free scattered light and selective bacterial fluorescent
labeling through the bacteria-selective maltodextrin metabolic
pathway, we have developed a framework for rapidly
determining bacterial antibiotic sensitivities. By specifically
labeling bacteria with maltohexaose-conjugated IR786 (MH-
IR786), coupled with our development of an adaptively binned
multidimensional statistical metric combining the best attrib-
utes of PB-χ2 adaptive binning41,42 and sQF image analysis,44,45

we develop a rapid, quantitative flow cytometric approach to
determine antibiotic sensitivities even in difficult-to-determine
antibiotic-bacterium combinations.

■ EXPERIMENTAL SECTION
Media and Antibiotics. E. coli ATCC33456 and P.

aeruginosa ATCC27853 were grown in Luria−Bertani (LB)
medium (Sigma-Aldrich, St. Louis, MO). The resistant E. coli
clinical isolate, Mu14S, was obtained from the Georgia
emerging infection program (GEIP). All antibiotics were
obtained from Sigma or as otherwise indicated. The E. coli
(ATCC 33456) MICs for each antibiotic were measured to be
32 μg/mL penicillin G, 0.125 μg/mL norfloxacin (Enzo Life
Science, Farmingdale, NY), 0.016 μg/mL ciprofloxacin, 8 μg/
mL kanamycin (Fisher Scientific, Waltham, MA), 1 μg/mL
tetracycline, 150 μg/mL erythromycin, 8 μg/mL azythromycin
(TCI America, Portland, Oregon), and 2 μg/mL gentamicin
(Life Technologies, Carlsbad, CA). The MICs for the E. coli
Mu14S strain were as follows: 4 μg/mL gentamicin, > 5000 μg/
mL penicillin G, > 8 μg/mL tetracycline. The P. aeruginosa
(ATCC 27853) MICs were as follows: 1024 μg/mL
kanamycin, 512 μg/mL ampicillin, 16 μg/mL tetracycline,
and 2 μg/mL norfloxacin.

Bacterial Strains and Culture. Bacteria were cultured
overnight in an incubator shaker (MaxQ 4000, Thermo Fisher
Scientific, Waltham, MA) in growth medium at 37 °C and 225
rpm. Bacteria were then reinoculated in 12 mL of fresh LB
medium in 50 mL tubes and incubated from ∼0.05 optical
density, judging from extinction at 600 nm, to the mid log
phase. For antibiotic susceptibility measured by MH-IR786,
bacteria in 1 mL of media were collected by centrifugation
(Centrifuge 5417R, Eppendorf) at 13,400 rpm for 3 min and
transferred into 12-well plates (Costar, New York, NY).
Antibiotics at the specified concentrations and 20 μL of MH-
IR786 to achieve a final concentration 900 nM were added
simultaneously. The 12-well plates were incubated at 37 °C for
1 h (Isotemp standard incubator, Fisher Scientific, Waltham,
MA). Bacteria were again collected by centrifugation and
washed 3 times with phosphate buffered saline (PBS) (Life
Technologies, Carlsbad, CA) and resuspended in 1 mL of PBS.
The bacteria samples were maintained on ice until flow
cytometry and imaging.

Flow Cytometry. Bacteria samples were analyzed by a BD
LSR II flow cytometer (Becton Dickinson, Franklin Lake, NY)
equipped with a 14 mW, 488 nm solid-state coherent sapphire
laser for the scatter signal and a HeNe Laser (18 mW @ 633
nm) for IR786 detection. Samples were gated by forward and
side scatter, while a 750−810 nm bandpass filter was used to
collect the IR786 fluorescence signal. Data were collected with
FACSDiVa provided by BD. Further data analysis and display
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were carried out with Matlab 2013b (Math Works). For each
data set, 100,000 bacterial detection events were collected.
PB-sQF Test Statistics. The statistical tests were performed

in Matlab 2013b on an AMD phenom II X4 820 (2.80 GHz)
machine, equipped with 4 GB DDR3 RAM running MS
Windows 7. Probability binning codes were written to be
equivalent to those described in published studies.41,42 In brief,
probability binning bins the data into approximately equal
counts/bin by varying bin width. Binning is performed by
calculating the variance of each dimension, identifying the
highest variance dimension, and dividing data at the median
into two new bins for the high variance dimension. Data on the
median are randomly assigned to daughter bins. This process
enabled all the bins to have similar counts. Both the control and
sample were binned in the same manner, and the centroids and
weights of each bin were calculated. The test statistics were
then calculated as described in sQF applications using these
described centroids and weights.44,45

The weight vector, which represents the probability of data
points falling into each bin (number of events in each bin
divided by the total number of events), includes weights from
the control and the sample as shown below:

= − − −w w w w w wWeight ( , , ..., , , , ..., )N N
c
1

c
2

c s
1

s
2

s

The subscripts indicate whether the weights were taken from
the control (C) or the sample (S), and the superscripts indicate
the bin for which the weights are calculated. The total number
of bins is denoted by N. The negative sign in front of the
sample weights was used to make sure that subtraction would
be carried out between the control and sample data in the later
steps to measure the differences between the two. Although the
terminology adopted here is that utilized in sQF image
analysis,44,45 these weights simply represent the different
normalized histogram bin counts of control and sample data
sets used in standard quadratic form analyses.43

The centroid vector is calculated from the geometric median
(or “Geometric quantile”, see below) to represent multidimen-
sional median:
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The subscripts and superscripts are the same as in the weight
vector. The centroids are then used to calculate the similarity
matrix. We defined the matrix elements at the ith row and the jth

column, Aij, in the similarity matrix, A, as

= −
# ·

A
L i j

L
1

[Cent( ), Cent( )]
dimensionij

max

The second term is the dissimilarity matrix with the
numerator denoting the Euclidean distance between centroids
i and j. The denominator is the normalized factor with Lmax
indicating the maximum distance in each dimension. Since we
are dealing with the same dynamic range in every dimension,
the maximum distance for n dimensions is Lmax·√n. When the
two centroids are exactly the same, the numerator is 0, meaning
no dissimilarity exists. On the other hand, due to the
normalization, when the distance between two centroids equals
the dynamic range (the largest possible distance between two
centroids), the dissimilarity is 1, representing a full dissimilarity.
The similarity matrix, which is the logical opposite of the
dissimilarity matrix, is 1 minus the dissimilarity as shown above.
The diagonal elements of the similarity matrix are always 1,

indicating that each centroid is most similar to itself. The test
statistics were calculated using the QF matrix operation:

= · ·D AWeight WeightT

WeightT is the transpose of the Weight vector. The test
statistics of antibiotic-treated data were then normalized by the
99% confidence level of its paired control. In this paper, we
calculated the 3-dimentional test with 128 bins.

Confidence Level Estimation. The bootstrap method was
used to determine the 99% confidence level. The flow data of
the no-antibiotic control and the 1/16x data were treated as
two mother distributions, and 70 daughter distributions with
the corresponding sample size, ranging in bacterial counts from
4*(number of bins) to (8000 + minimum sample size) with
step size 400, were subsampled from each mother distribution.
These distributions were then binned, and the PB-sQF protocol
was followed to calculate the test statistics. For each sample
size, test statistics were calculated between all 70 of the no-
antibiotic control subdistributions and all 70 of the 1/16x data
subdistributions. The distance measurements between all pairs
of control-1/16x MIC daughter distributions yield a distribu-
tion of test statistics values, resulting from random subsampling
from the mother distributions (biological variability). The 99%
confidence level of all the test statistics at each sample size can
be determined. The distance corresponding to the confidence
level decreased as the subsample size increased and can be fit by
an equation similar to the standard error of the sample mean:
Conf(n) = a0 + a1/√n, where Conf is the 99% confidence level
value, n is the sample size, and a0 and a1 are the fitting
parameters (Figure S6C). Here, a0 is the unknown confidence
level of the population. According to central limit theorem, the
test statistics distribution of the subdistributions should
approximate a Gaussian distribution at large sample size.
Thus, the uncertainty (standard error) in estimating the
population’s confidence level should follow a1/√n. The
observed confidence level then decreases with the inverse
square root of the number of data points. As subsample size
increases, the deviations become smaller and the estimation
converges to the population confidence level. From the fitting,
we can then estimate the 99% confidence level of the mother
distribution with a sample size, n = 100,000.

Error Bar Determination. The error bars in the test
statistics bar charts combine two different uncertainties. One
results from biological variability, while the other arises from
the dispersion of data points. Biological variability is estimated
by the standard deviation of the normalized test statistics of the
triplicate data. Errors from binning account for the uncertainty
in accurately determining the centroid position within each bin.
Median absolute deviation (MAD) is used to measure the
dispersion of each bin since it is more robust toward outliers
compared to standard deviation. The MAD is calculated as
follows:

= −XMAD median[abs[ centroid]]i

That is, it is the median of the absolute distance between
each data point, Xi, and the centroid of each bin.

53,54 The MAD
can then be used to estimate the standard deviation by

σ
ϕ

=
− ( )

MAD
perbin
MAD

1 3
4

Analytical Chemistry Article

DOI: 10.1021/ac504241x
Anal. Chem. 2015, 87, 1941−1949

1943

http://dx.doi.org/10.1021/ac504241x


where φ−1 is the inverse of the cumulative distribution function
or the quantile function.54 As a result, the standard deviation
estimated from MAD is the MAD divided by the 75% quantile,
which was determined from the geometric quantile. The
uncertainty from each bin, σperbin

MAD , was then propagated to yield
the final binning uncertainty for replica “i”, σi

binning.
The binning uncertainty from each replica was then pooled

together to estimate the variance of the unknown population,
where all triplicate data were presumably sampling from this
same unknown population

σ
σ

=
∑ −

∑ −
=

=

n

n

( 1)( )

( 1)
i
k

i i

i
k

i
binning
2 1

binning 2

1

in which k = 3, since we have triplicate data. ni is the sample size
of each replica, which will be close to 100,000 data points (ni
will be exactly 100,000 if no gate is applied before analysis).
The errors from triplicate data and from the binning process

were then propagated together to yield the final uncertainty.

σ σ σ= +2
Tri
2

binning
2

The error bars in the bar charts are one standard deviation
above and below the test statistic value.
Geometric Quantiles. Geometric quantiles are applied first

in determining the centroid of each bin and second in
estimating the error from binning. The whole process uses the
quasi-Newton method to solve an unconstrained minimization
problem. The target function that we minimize here, as
described by Chaudhuri55 is

∑⃗ = | ⃗ − ⃗ |+ ⃗· ⃗ − ⃗
=

f Q X Q u X Q( ) { ( )}
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in which n is the number of data points in each bin; X⃗i is the
data point; and Q⃗(m) is the quantile of the mth iteration; u = 2α
− 1, where α is the fractional quantile. For example, α = 0.5 if
we are calculating median (50% quantile). The target function
then reduces to f(Q⃗(m) = ∑i=1

n {|X⃗i − Q⃗(m)|}). The median is the
Q that minimizes the sum of distances between each data point
to the median. When u is nonzero, the second term in the
target function takes the deviation from the median into
account. Our initial guess, Q⃗(0), is the 1-D quantile in each
dimension. Q⃗(1) is estimated using the following equations:

⃗ = ⃗ + ⃗
+

Q Q s
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in which s ⃗(m) is the increment determined by the first- and
second-order derivative of the target function at the current
iteration. For each step, we need to examine whether f(Q⃗(m+1))
< f(Q⃗(m)). If not, we need to choose a better Q⃗(m+1).56

The iteration stops when either (1) the iteration has been
carried out 50 times, with incremental change, δ ≤ s ⃗(m), or (2)

the relative gradient in Q is smaller than the stopping criteria
we set. The relative gradient is

=

δ

δ

⃗ + − ⃗

⃗

⃗
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In this work, the iteration was stopped when relgrad(Q) is
smaller than 10−4.

■ RESULTS
Sample Preparation and Data Collection. Bacterial

strains were incubated with 900 nM MH-IR786 and antibiotics
at their respective 1x, 1/4x, and 1/16x MIC concentrations that
were first determined by standard microbroth dilution assays
(Table 1). After 1-h incubation, bacteria were pelleted, washed
3 times, and resuspended in PBS for cytometry analyses. Three
major bactericidal antibiotics classes, β-lactams (penicillin G
and ampicillin), quinolones (ciprofloxacin and norfloxacin), and
aminoglycosides (kanamycin and gentamicin) as well as
bacteriostatic antibiotics (tetracycline, erythromycin, and
azithromycin) that target various biological processes were
examined with a total processing time of <4 h.
Fluorescence and scatter signals upon antibiotic challenge

were monitored by flow cytometry. IR786 fluorescence,
forward-scattered and side-scattered light were all collected
for each of 100,000 measured bacterial cells per run, yielding 3-
D histograms for each antibiotic concentration. All experiments
were performed in triplicate and compared to appropriate
paired no-antibiotic controls. Using the entire data set as the
initial “bin”, data were adaptively binned by splitting the data in
each bin at the median of the dimension of highest variance.
Each daughter bin was then similarly split at the median of its
highest variance dimension until the desired number of bins is
achieved. Details on this probability-binning algorithm are
given in the Experimental Section. Test results were calculated
between each antibiotic data set and its paired control, the
antibiotic-free, MH-IR786-labeled bacterial data. A 99%
confidence level was determined by bootstrapping and was
unique for each no-antibiotic control-1/16x MIC sample pair
(details in the Experimental Section). Test results for each
bacterium/antibiotic combination were normalized to its own
99% confidence distance, directly reporting on differences
between antibiotic-treated samples vs no-antibiotic paired
controls. These individually normalized test results, or “fold
distances” from each individual paired control, are then directly
compared among all antibiotic exposure data. Fold distances
from paired controls are plotted as averages of triplicates with
standard deviations representing biological variability and
intrabin data dispersion (see the Experimental Section for
more detail). Test results were considered statistically
distinguishable beyond error bars, allowing identification of
antibiotic-induced effects. Normalizing test results by the 99%
confidence level of each paired control, removes machine-to-
machine and day-to-day variations, facilitating direct compar-
isons.

Table 1. MIC (μg/mL) for Each Antibiotic/Bacteria Combination

Pen G Amp Nor Cip Kan Tet Ery Azi Gen

E. coli ATCC 33456 32 0.125 0.016 8 1 150 8 2
E. coli Mu14S >5000 >8 4
P. aeruginosa ATCC 27853 512 2 1024 16
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Antibiotic-Induced Changes in Susceptible E. coli.
Data of E. coli (ATCC 33456) treated for 1-h with penicillin G,
tetracycline, and kanamycin are shown in Figure 1 (Complete
flow cytometry histograms with additional antibiotics can be
found in Figures S1 and S2). Upon penicillin G treatments at
near MIC concentrations, both scatter and fluorescence signals
significantly shift (Figure 1A and 1D). Tetracycline, a
bacteriostatic antibiotic targeting the 30S subunit of the
bacterial ribosome, however, primarily altered only scatter
signals relative to the no-antibiotic control (Figure 1B vs 1E).
Conversely, kanamycin, another drug targeting the 30S
ribosome, only induced very minor scatter changes, consistent
with prior reports with aminoglycoside antibiotics,30 but the
fluorescence signal from MH-IR786 clearly increases upon 1x
MIC exposure (Figure 1C and 1F). Although MH-mediated
dye uptake has been shown to occur via the LamB transporter
in E. coli,46 it is clear that MH-dye concentration further
increases upon near-MIC challenge with certain antibiotics.
This provides additional distance-based discrimination of
antibiotic-challenged bacteria vs paired controls. Thus, multi-
dimensional statistical metrics that combine both scatter and
fluorescence are needed for generalizable, quantitative differ-
entiation of population changes relative to paired controls.
Incorporating uncertainties arising from both biological

variability and intrabin data dispersion into PB-sQF (see the

Experimental Section), all test results (Figure 1G) demonstrate
statistically significant distances of the 1x MIC data from that of
the 1/16x MIC data, that is, beyond the 99% confidence level.
Clear trends and transitions occur for all antibiotic/bacteria
combinations with increasing antibiotic concentrations. The
tested antibiotics target a wide range of processes (DNA
replication, protein synthesis, or cell wall synthesis), yet, when
using our multidimensional statistical metric that reduces all
differences to a single linear distance from its paired control, all
classes of antibiotics showed discernible, statistically significant
changes in flow cytometry signals. Underpinning the flow
cytometry/PB-sQF results, phase-contrast images of E. coli
show clear morphology changes resulting from antibiotic
treatment (Figure S3). Note that the 99% confidence level,
which was determined by the bootstrap method of calculating
the test statistics between the subsampling daughter distribu-
tions of the no-antibiotic control and the 1/16x MIC data at
small sample size, accurately estimates the 99% confidence level
distance between the two mother distributions. Thus, distances
among all individually binned multidimensional histograms are
reduced to single linear distances relative to paired controls
using our PB-sQF distance metrics, enabling antibiotic
sensitivities to be determined after only 1-h exposures in
comparison to overnight incubation in standard ASTs.

Figure 1. Antibiotic-induced signal changes. All data were collected in the presence of MH-IR786. (A to C) Scatter signal changes for different
antibiotics. The pseudocolor plots are the no-antibiotic data. The overlay contour plots were data of the 1x MIC treatment. (A) Penicillin G, (B)
tetracycline, (C) kanamycin. (D to F) Fluorescence signal changes from 1/16x MIC to 1x MIC and the no-antibiotic control. Gray curve: no
antibiotic. Blue curve: 1/16x MIC. Green curve: 1/4x MIC. Red curve: 1x MIC. (D) Penicillin G, (E) tetracycline, (F) kanamycin. (G) The PB-sQF
results of the 3D data. Black line: 99% confidence level from the test statistics between no-antibiotic control and 1/16x MIC data. All the data were
normalized by the confidence level. Blue bar: 1/16x MIC. Green bar: 1/4x MIC. Red bar: 1x MIC.
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Cytometric Susceptibility Analysis of a Resistant E.
coli Clinical Isolate. To evaluate the antibiotic-induced
changes in resistant strains, we examined a multidrug resistant,
clinically isolated E. coli, Mu14S. Mu14S was susceptible to
gentamicin but was highly resistant to all other tested
antibiotics (Table 1). We examined both the laboratory strain
(ATCC 33456) and Mu14S with penicillin G, tetracycline, and
gentamicin in parallel. Consistent with the data shown in Figure
1, incubation with penicillin G at 1x MIC of ATCC33456 strain
clearly shifts its scatter and fluorescence distributions (Figures
2A and S4) while not affecting those of the resistant clinical
strain Mu14S (Figures 2D and S4). The 3D data (forward
scatter, side scatter, and fluorescence) from both strains were
quantified with PB-sQF (Figure 2G). Analysis confirmed that
penicillin G was effective toward ATCC with both 1/4x and 1x
MIC extending above the 1/16x−no-antibiotic, 99% confidence
level, while all Mu14S results were below the 99% confidence
level, indicating that PB-sQF registers no significant changes at
these concentrations. On the other hand, while tetracycline
induced scatter changes in ATCC33456 (Figure 2B) without
clear fluorescence shifts (Figure S4), neither scatter nor
fluorescence signals shifted upon tetracycline exposure in
Mu14S strain (Figures 2E and S4). The PB-sQF results
confirmed the ATCC33456 sensitivity and Mu14S resistance
toward tetracycline (Figure 2H).

The MICs for ATCC33456 and Mu14S of gentamicin are 2
μg/mL and 4 μg/mL, respectively. Both strains were incubated
with gentamicin at the MIC of Mu14S. Gentamicin induced
very little scatter and fluorescence shifts in either strain (Figures
2C, 2F, S4). However, our improved statistical metrics enable
accurate quantification of these small differences (Figure 2I).
Even with triplicate and centroid uncertainties, the test results
registered significant changes from 1/4 μg/mL to 4 μg/mL for
both strains, confirming the microbiological report, but with
only 1-h exposure.

P. aeruginosa Characterized by Flow Cytometry and
PB-sQF. Previous studies have shown that P. aeruginosa strains
are particularly difficult test cases with most antibiotics in which
bacterial viability tests routinely fail.25 For P. aeruginosa, this
was explained by its outer membrane interaction with the dye
propidium iodide (PI), yielding too high a background. Thus,
we applied our 3D PB-sQF to P. aeruginosa using four different
antibiotics. Using PB-sQF, P. aeruginosa exhibits readily
distinguished sample-control distances analogous to those in
E. coli, upon near MIC exposure to the same antibiotics (Figure
3 and Figure S5). In the fluorescence data (Figure 3B and
Figure S5), it is clear that a single threshold is difficult to
establish without any false positive or false negative counts
since the control curve significantly overlaps the antibiotic-
treated distributions. By directly comparing the whole data set,

Figure 2. Signal changes induced by antibiotic treatments in E. coli with different susceptibilities. All data were collected in the presence of MH-
IR786. (A to F) Scatter signal changes. The pseudocolor plots are the no antibiotic paired control, for each strain. The overlaid contour plots are the
1x MIC antibiotic concentration scatter data. (A to C) The lab strain E. coli (ATCC 33456). (D to F) The multidrug clinical strain E. coli (Mu14S).
(G to I) PB-sQF 3D test results. First column (A, D, and G) penicillin G; second column (B, E, and H) tetracycline; third column (C, F, and I)
gentamicin. Penicillin G and tetracycline were examined at the 1x, 1/4x, and 1/16x of MIC of ATCC (32 and 1 μg/mL, respectively). Gentamicin
was applied at the MIC of Mu14S (4 μg/mL). FSC: forward scatter. SSC: side scatter. (Corresponding fluorescence data can be found in the
Supporting Information).
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PB-sQF removes the need for artificial thresholds, enabling
quantitative comparisons.

■ DISCUSSION
Historically, specific bacteria/antibiotic combinations have been
especially difficult to assay with flow cytometric scatter or
viability testing. For example, ciprofloxacin with E. coli,23

tetracycline, and norfloxacin with several bacterial species and
most antibiotics with P. aeruginosa are particularly difficult test
cases in which bacterial viability tests routinely fail.25 Using our
3D PB-sQF, we have demonstrated not only the difficult-to-
determine E. coli sensitivity to either ciprofloxacin, tetracycline,
or norfloxacin (Figure 1) but also that P. aeruginosa exhibits
readily distinguished sample-control distances similar to those
in E. coli, upon near MIC exposure to antibiotics.
Due to the large possible signal shifts, fluorescence-based

viability tests are typically preferred over scattered light signals
in flow cytometry. Frequently, only weakly quantitative
distribution averages and standard deviations or intensity ratios
are used to qualitatively discern differences among samples,
instead of using appropriate multidimensional statistical tests
with paired controls.22,23,25,28,29,47,48 This lack of statistical rigor
has prevented antibiotic susceptibility of many bacteria/
antibiotic combinations from being determinable with rapid
cytometric methods. The quantitative PB-χ2 methods41,42 from
which we have adapted our binning methods have been a
significant advance in analysis. However, sample differences do
not yield linear distances from calculated test statistics,
suggesting that PB-χ2 is not a statistical metric and preventing
all samples from being directly compared on the same distance
axis. This was confirmed in our studies as we increased the
differences between the data and sample, a linear increase was
not obtained in the test value (Figure S6A). Thus, test results
between subdistributions could not be directly aligned on the

same scale, clouding direct comparisons to paired controls.
Although for data with larger PB-χ2 test statistics vs the same
control with the same binning pattern, greater test statistic
differences indicate smaller similarity with the control.
However, not knowing the response curve, it precludes
knowing how dif ferent the two data sets actually are. Further,
since all the data all must be binned according to the control
binning pattern, the response curves might possess different
curvature when different controls are used. Confounding
comparisons among data from different days or machines,
this control-dependent property might also contribute to error
in test statistics when triplicate (or more) data with their own
paired-control are considered. Nonetheless, our bootstrap
method can also be applied to PB-χ2, and a 99% confidence
level can be determined from fitting (Figure S6B). This 99%
confidence level can be used as a threshold, and a similar bar
chart regarding antibiotic susceptibility can be created.
Although the fold distance is less meaningful here, a similar
AST can still be built. PB-sQF directly circumvents these
problems by combining the linear aspect of QF statistics with
probability binning to better interpret the flow cytometry data,
each with its own optimal binning.
Flow cytometry data are most typically qualitatively analyzed

by setting artificial thresholds using either membrane potential
or membrane permeability dyes.25,28,47 Usually applicable only
to 1-D data, statistical methods employed in flow scale
quadratically or faster with the number of bins and either
subject to specific binning pattern and/or cannot be scaled to
multidimensional data sets.39,40 PB-sQF scales quadratically
with the number of bins, which are concentrated around the
data signatures due to the adaptive binning process. The linear
distance among bin centroids and comparisons to paired
controls removes machine-specific variabilities, while biological
variations can be quantitatively incorporated. In PB-sQF, a
statistical threshold is easily established by bootstrapping
without any assumption of the data distributions. Test results
can be normalized by this statistical threshold so data from
different machines or collected on different days can be
compared directly in a “fold distance” fashion. PB-sQF is a new,
robust statistical metric exhibiting more advantageous scaling to
multiple dimensions than even QF, as it requires fewer bins in
each dimension−naturally adapting to where the data points
cluster (the signatures). Each data set is adaptively binned, and
the distance between signatures or binning patterns is directly
calculated and can be directly compared for each multidimen-
sional histogram, thereby enabling direct comparisons of
sample with paired negative controls for excellent discrim-
ination of differences in response to antibiotic concentrations.
As maltohexaose conjugates are believed to be incorporated

into bacteria via active uptake processes,46,49 shifts in MH-
targeted fluorescence signals likely indicate changes in bacterial
physiological status. Forward and side scatter, however, provide
label-free measurements that largely reflect cell size/morphol-
ogy and internal cellular structure/granularity, respectively.50

Indeed, images of bacteria at near-MIC antibiotic levels are
often elongated relative to those without antibiotic present
(Figure S3). Also, antibiotic-induced filamentation has been
observed to result from exposure to β-lactam,21,51 quino-
line,21,29 and bacteriostatic52 antibiotics. Although it is not clear
how these antibiotics, with different primary targets, uniformly
induce changes in morphology and/or physiology, their
changes in flow data from no-antibiotic controls appear to be
generally correlated with antibiotic sensitivity levels.

Figure 3. PB-sQF registered antibiotic-induced signal changes in P.
aeruginosa. (A) Scatter signal changes by norfloxacin. The pseudocolor
plots are the no antibiotic control. The contour plots lay above were
the 1x MIC scatter data. (B) Norfloxacin-induced MH-IR786
fluorescence signal changes. (C) The 3D PB-sQF test results for
norfloxacin and other antibiotics-induced signal changes.
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■ CONCLUSION
By analyzing bacterial flow cytometry data after only 1-h
incubation, the quantitative statistical metric, PB-sQF identifies
the data signatures and compares them by reducing multi-
dimensional differences to a linear distance between antibiotic-
treated data and paired no-antibiotic controls. With rigorous
uncertainties incorporated, subtle, but biologically relevant,
antibiotic-induced changes become directly quantifiable, even
as these antibiotics target widely varying biological pathways
including DNA replication, protein synthesis, or cell wall
synthesis.32 Thus, scattered light and bacteria-targeted fluo-
rescence, coupled with new statistical metrics, appear to more
generally enable rapid flow cytometry signal changes to gauge
antibiotic resistance over a wide range of bacteria/antibiotic
combinations. Even very difficult to discern combinations that
fail with viability tests are readily distinguished with our
statistical measures that are scalable to multiparameter
measurements.
With potential to improve patient outcomes through

shortening the window during which empiric antibiotic
treatment is the only recourse, flow-based antibiotic sensitivity
determination suggests a >10-fold reduction in post blood
culture time to result (∼42 h to ∼4 h). As antibiotic
susceptibilities and resistance proliferation are of great concern,
these results suggest a path toward more effective and timely
treatment. As time to treatment is a major determinant of
positive patient outcome, the strong correlation of sample-
control distance in combined scatter and fluorescence shifts
with antibiotic sensitivity strongly suggests that general
criterion can be established for developing robust flow
cytometric based, rapid ASTs.
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